Exercise 39

If two resistors with resistances R_{1} and R_{2} are connected in parallel, as in the figure, then the total resistance R, measured in ohms (Ω), is given by

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

If R_{1} and R_{2} are increasing at rates of $0.3 \Omega / \mathrm{s}$ and $0.2 \Omega / \mathrm{s}$, respectively, how fast is R changing when $R_{1}=80 \Omega$ and $R_{2}=100 \Omega$?

Solution

Simplify the right side of the given formula.

$$
\begin{aligned}
\frac{1}{R} & =\frac{R_{2}}{R_{1} R_{2}}+\frac{R_{1}}{R_{1} R_{2}} \\
& =\frac{R_{2}+R_{1}}{R_{1} R_{2}}
\end{aligned}
$$

Invert both sides to get R.

$$
R=\frac{R_{1} R_{2}}{R_{2}+R_{1}}
$$

Take the derivative of both sides with respect to time by using the chain and quotient and product rules.

$$
\begin{aligned}
\frac{d}{d t}(R) & =\frac{d}{d t}\left(\frac{R_{1} R_{2}}{R_{2}+R_{1}}\right) \\
\frac{d R}{d t} & =\frac{\left[\frac{d}{d t}\left(R_{1} R_{2}\right)\right]\left(R_{2}+R_{1}\right)-\left[\frac{d}{d t}\left(R_{2}+R_{1}\right)\right] R_{1} R_{2}}{\left(R_{2}+R_{1}\right)^{2}} \\
& =\frac{\left(\frac{d R_{1}}{d t} R_{2}+R_{1} \frac{d R_{2}}{d t}\right)\left(R_{2}+R_{1}\right)-\left(\frac{d R_{2}}{d t}+\frac{d R_{1}}{d t}\right) R_{1} R_{2}}{\left(R_{2}+R_{1}\right)^{2}}
\end{aligned}
$$

Therefore, when $d R_{1} / d t=0.3, d R_{2} / d t=0.2, R_{1}=80$, and $R_{2}=100$, the rate of change of the total resistance is

$$
\left.\frac{d R}{d t}\right|_{\substack{R_{1}=80 \\ R_{2}=100}}=\frac{[(0.3)(100)+(80)(0.2)](100+80)-(0.2+0.3)(80)(100)}{(100+80)^{2}}=\frac{107}{810} \frac{\Omega}{\mathrm{~s}} \approx 0.132099 \frac{\Omega}{\mathrm{~s}} .
$$

